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Three trinuclear copper(Il) complexes bearing the same ;L;-CO%’ bridge and triangular
geometry,  {[Cus(bpy)s(CO:)I(CIOL)4(CH;OH)H,0) (1), {[Cus(bpy)s(CO5)I(ClO4)4
(CoH50H)4(H20)2} (2), and {[Cus(bpy)s(CO3)[(PFe)a(H20),} (3) (bpy = 2,2'-bipyridine), have
been synthesized and structurally characterized. The common [Cu3(bpy)s(CO3)]*" cationic unit
is found in 1-3 but distinguishable coordination is observed for the central CO%‘ bridge,
namely us-n% 02, n” in 1, us-n', ', n' in 2, and pus-n', ', * in 3. Five-coordinate trigonal
bipyramidal and square pyramidal as well as six-coordinate octahedral structures for the
copper(Il) centers in 1-3 are observed. The presence of different counterions and solvent is
responsible for the variations of coordination spheres of copper(Il) and crystal packing modes
in 1-3.

Keywords: Copper(Il) complexes; Trinuclear complexes; n3-COs>~ Bridge; Coordination
fashions

1. Introduction

Polynuclear copper(Il) complexes connected by a variety of bridging ligands and anions
have been investigated because of their supramolecular structures, optoelectronic, and
magnetic properties [1-4]. Most commonly used bridging anions are OH™, X, Cin_,
NOj etc., however, CO%f has been seldom employed in polynuclear copper(Il)
complexes although three oxygen atoms are in the anion. Due to versatile coordination
of carbonate, dimers, trimers, and tetramers, as well as 1-D, 2-D, and 3-D complexes,
have been reported [5-21].

Carbonate-bridged copper(Il) complexes are formed from in situ fixation of
atmospheric CO, in many cases [22-25]. Fixation of greenhouse atmospheric CO, is
of special interest for coordination and environmental chemistry [26-30]. In our
previous work, C—C bond cleavage of acetonitrile has been catalyzed by some
copper(Il) complexes with bpy, such as [Cu(bpy),(ClO4)](ClOy4) - 2H»O [31]. In addition
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Scheme 1. Different coordination modes of the trinulear [Cu3(bpy)g,(CO3)]4+ cationic units in 1-3. The
dotted lines (A) show the uncoordinated Cu—O distances (>2.525(6) A).

to formation of mono-, di-, tri-, and tetranuclear cyano-bridged mixed-valent copper
complexes, some unexpected carbonate-bridged trinuclear copper(Il) by-products were
isolated and structurally characterized, obtained from fixation of atmospheric CO,.
In this article, we report three trinuclear copper(Il) complexes bearing u;,-CO%f bridge
andtriangular geometry, {[Cus(bpy)s(CO3)](ClO4)4(CH3;0H)(H>0),} (1), {[Cus(bpy)s
(CO3)I(CIO044CoHsOH)4(H>0),} (2), and {[Cus(bpy)s(CO3)I(PFe)4(H>0),} (3). The
common [Cus(bpy)s(CO3)]*" cation exhibits distinguishable coordination for the
central Cng bridge, namely pus-n% 7% n* in 1, us-n', ', n' in 2, and ps-n', ', n* in
3 (scheme 1).

2. Experimental

2.1. Materials and measurements

All reagents were of analytical grade from commercial sources and used without
purification. [Cu"(bpy)>(Cl04)])(ClOy) - 2H,0 and [Cu" (bpy)»,(ONO,)](NO5) - H,O were
prepared by a literature method [32]. Infrared (IR) spectra (4000-400cm™') were
collected on a Nicolet FT-IR 170X spectrophotometer at 25°C using KBr plates.
Electrospray ionization mass spectra (ESI-MS) were recorded on a Finnigan MAT SSQ
710 mass spectrometer from 100 to 1200 amu. Ultraviolet-Visible (UV-Vis) spectra were
recorded on a Shimadzu UV-3100 double-beam spectrophotometer using a quartz glass
cell with a path length of 10 mm at room temperature.

Caution! Although no problem was encountered in our experiments, transition metal
perchlorates are potentially explosive and should be handled in small quantities.

2.2. Preparation of {[Cuz(bpy)s(CO3)](CIlO,),(CH;0H)(H,0),} (1) and
{[Cus(bpy)s(CO3) [ (ClO4) ( C;HsOH) «(H>0) 3} (2)
A solution of [Cu"(bpy)»(ClO4)](ClO,) - 2H,0 (0.2444 g, 0.4 mmol) in CH;CN (15cm’)

was added to a solution of benzaldehyde in CH;OH (20cm’, 0.04 mmolcm ). The
mixture was refluxed for 50h and allowed to evaporate slowly at room temperature
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in air. Blue crystals of [Cu''(bpy)»(Cl0,)](C104) - 2H,0 and [Cu"(bpy);](Cl0,), as well
as a few dark blue crystals of 1 (~20% yield) suitable for X-ray diffraction
determination were collected after two weeks. Main FT-IR absorptions, (KBr pellets):
v=13434(b, m), 3064(w), 1604(m), 1472(w), 1444(s), 1380(s), 1084(vs), 840(m), 780(s),
623(m). Anal. Calcd for [CyrHs56Cl4CuszN1,055] (%): C, 45.03; H, 3.41; N, 10.16. Found
(%): C, 44.79; H, 3.60; N, 10.37. UV-Vis (CH30H): Ay =212, 240, and 298 nm. ESI-
MS (m/2): 188 ([Cu(bpy)sI**/2), 250 ([Cux(bpy)2(CO)*/2), and 266 ([Cu(bpy)s]**/2).

If the solvent was replaced by C,HsOH, the reaction gave [Cu'(bpy),(ClOy)]
(Cl0y) - 2H,0 and [Cu"(bpy);](ClOy), as well as a few dark blue crystals of 2 (~10%
yield). The single crystal of 2 suitable for X-ray diffraction determination is obtained by
slow evaporation at room temperature in air for two weeks. Main FT-IR absorptions,
(KBr pellets): v=3440(b, m), 3054(w), 1607(m), 1477(w), 1440(s), 1382(s), 1089(vs),
840(m), 776(s), 623(m). Anal. Calcd for [CsHscCl4Cu3N,055] (%): C, 45.89; H, 4.24;
N, 9.31. Found (%): C, 45.61; H, 4.52; N, 9.55. UV-Vis (CH30H): A,.x =209, 241, and
297 nm. ESI-MS (m/z): 188 ([Cu(bpy).]**/2), 250 ([Cux(bpy)-(CO3)]*"/2), and 266
([Cu(bpy)s**/2).

2.3. Preparation of {[Cus(bpy)s(CO;3)](PFs),(H>0),} (3)

A solution of [Cu'(bpy)»(ONO,)](NO5) - H,O (0.2072 g, 0.4 mmol) in CH;CN (15cm?)
and KPFg (0.3680 g, 2.0 mmol) in H,O (5 cm?) was added to a solution of benzaldehyde
in C,HsOH (20cm®, 0.04mmolcm ). The mixture was refluxed for 50h and the
solution was allowed to evaporate slowly at room temperature in air. Blue crystals of
[Cu"(bpy);](PF¢)> and [Cu"(bpy),(ONO,)](PF) as well as a few green crystals of 3
(~10% yield) suitable for X-ray diffraction were collected after two weeks. Main FT-IR
absorptions, (KBr pellets): v=3421(b, m), 3089(w), 1603(m), 1475(w), 1446(s), 1384(s),
1294(m), 1163(m), 1032(m), 845(vs), 771(s), 661(w), 557(s). Anal. Calcd for
[C62H56Cl4Cu3N1,04,] (%): C, 41.03; H, 2.82; N, 9.41. Found (%): C, 41.38; H,
3.09; N, 9.61. UV-Vis (CH30H): Ay.=211, 238, and 298 nm. ESI-MS (m/z): 188
([Cu(bpy)a]**/2), 250 ([Cua(bpy)x(CO3)I**/2), and 266 ([Cu(bpy)s]**/2).

2.4. Crystal structural determination and refinement

Single crystals of 1-3 were covered in glue and mounted on glass fibers and used for
data collection. Crystallographic data of 1-3 were collected at 291(2) K on a Bruker
SMART 1K CCD diffractometer using graphite monochromated Mo-Ka radiation
(A =0.71073 A). The crystal systems were determined by Laue symmetry and the space
groups were assigned on the basis of systematic absences using XPREP. Absorption
corrections were performed to all data and the structures were solved by direct methods
and refined by full-matrix least-squares on F(Z)bS by using the SHELXTL-PC software
package [33]. All non-H atoms were anisotropically refined and all hydrogen atoms
were inserted in calculated positions, assigned fixed isotropic thermal parameters, and
allowed to ride on their respective parent. The common cationic structure of
([Cus(bpy)s(CO5)]*") in 1-3 can be easily solved, but the severely disordered anions
and solvent molecules are very difficult to be fully located because of the low-quality
diffraction data, even though many attempts were carried out. The summary of the
crystal data, experimental details, and refinement results for 1-3 is listed in table 1.
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Table 1. Crystallographic data and structural refinement for 1-3.

Compound 1 2 3
Formula Ce2H54C14Cu3N 1,05, CeoH74Cl4Cu3N 1504 Ci22HogCugF4sN2407Pg
Formula weight 1635.59 1787.82 3553.30
Temperature (K) 291(2) 291(2) 291(2)
Crystal system Triclinic Triclinic Triclinic
Space group i P1 P1 Pi
Unit cell dimensions (A, °)
a 13.681(4) 14.1453(14) 12.971(6)
b 13.703(4) 14.2593(14) 14.032(6)
¢ 21.633(6) 24.200(2) 22.124(10)
o 84.952(4) 97.299(2) 91.137(7)
B 74.183(4) 98.635(2) 105.751(6)
y . 62.631(4) 118.438(1) 115.124(7)
Volume (A%), Z 3461.9(17), 2 4131.4(7), 2 3466(3), 1
Calculated density (gem ™) 1.586 1.452 1.702
Absorption coefficient (mm~")  1.153 0.973 1.125
F(000) 1686 1838 1780
Crystal size (mm?) 0.10 x 0.10 x 0.12 0.10 x 0.10 x 0.12 0.10x0.12x0.14
h, k, [ limiting indices —-8<h<16; —16<h<16; —15<h<14;
—15<k<1e6; —16<k<16; —l6<k<14;
—25<1<25 —23</<28 —26</<26
Reflections collected 17,031 20,778 17,633
Independent reflection 11,893 14,290 12,038
Reflections [I > 20(1)] 4670 4162 3082
Parameters 904 943 973
Goodness-of-fit on F* 1.040 0.996 0.679
Final R indices [/ > 20(])] R, =0.0921, R;=0.0988, R;=0.0634,
wR,=0.2179 wR,=0.2586 wR,=0.1017
R indices (all data) R;=0.1962, R, =0.2375, Ry =0.2217,
. wR,=0.2504 wR,=0.2877 wR,=0.1317
Max./min. Ap (e A~3) 1.468 and —1.128 1.105 and —0.583 0.682 and —0.522

Ry = || Fo| = Fl/ S| Fol. wRy=[S[w(F2—F2))/ Zw(F2)]'7.

Selected bond distances and angles related to copper are given in table 2, while weak
C—H- - -O hydrogen bonds in 1-3 are listed in table 3.

3. Results and discussion

3.1. Synthesis and spectral characterization

We previously employed [Cu'(bpy),]*" with different anions to catalyze C—C bond
cleavage of acetonitrile in the presence of reductants such as aryl aldehydes. To better
understand these reactions, we have carried out many control experiments. Although
no CN™ containing products have been obtained under some reactions by using excess
reductants, mononuclear [Cu''(bpy),]*" and [Cu''(bpy);]*" based complexes with
different counterions proved to be the main products. Among them, several unexpected
m-CO%‘-bridged Cu'" complexes 1-3 are obtained where the carbonate may come from
atmospheric CO, when the solutions are exposed to air in the process of growing single
crystals.
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Table 2. Selected bond lengths (A) and angles (°) for 1-3.

1

Cul-O1
Cul-02
Cul-N1
Cul-N2
Cul-N3
Cul-N4
Cu2-02
Cu2-03
Cu2-N5
Cu2-N6
Cu2-N7
Cu2-N8

0O1-Cul-02
O1-Cul-N1
O1-Cul-N2
O1-Cul-N3
O1-Cul-N4
02-Cul-Nl1
02-Cul-N2
02-Cul-N3
02-Cul-N4
NI1-Cul-N2
NI1-Cul-N3
NI1-Cul-N4
N2-Cul-N3
N2-Cul-N4
N3-Cul-N4
02-Cu2-03
02-Cu2-N5
02-Cu2-N6
02-Cu2-N7
02-Cu2-N8
03-Cu2-N5
03-Cu2-N6
03-Cu2-N7

2

Cul-0O1
Cul-N1
Cul-N2
Cul-N3
Cul-N4
Cu2-02
Cu2-N5
Cu2-N6
Cu2-N7
Cu2-N8

O1-Cul-Nl1
O1-Cul-N2
O1-Cul-N3
O1-Cul-N4
NI-Cul-N2
N1-Cul-N3
NI1-Cul-N4
N2-Cul-N3
N2-Cul-N4
N3-Cul-N4
02-Cu2-N5

2.395(7)
2.467(7)
2.047(8)
1.962(8)
2.102(9)
1.951(7)
2.551(7)
2.279(6)
1.985(8)
2.060(7)
1.978(8)
2.116(11)

52.002)
159.7(3)
96.2(4)
89.9(4)
83.9(3)
108.0(3)
89.5(3)
141.7(3)
91.3(3)
79.1(4)
110.3(3)
101.2(3)
99.5(4)
179.0(4)
79.5(3)
50.9(2)
88.3(3)
124.2(3)
90.9(3)
132.4(3)
94.9(3)
173.7(4)
89.5(3)

1.998(8)
2.033(10)
1.981(10)
2.178(9)
2.015(10)
1.948(8)
1.969(9)
2.049(10)
2.166(10)
2.024(9)

157.6(3)
92.2(4)
102.2(3)
89.9(3)
81.0(5)
100.1(3)
95.8(4)
104.7(4)
176.0(4)
78.1(4)
94.8(4)

Cu3-0O1
Cu3-03
Cu3-N9
Cu3-N10
Cu3-N11
Cu3-N12
0O1-C61
02-C61
03-Co1

03-Cu2-N8
N5-Cu2-N6
N5-Cu2-N7
N5-Cu2-N8
N6-Cu2-N7
N6-Cu2-N8
N7-Cu2-N8
01-Cu3-03
O1-Cu3-N9
O1-Cu3-N10
O1-Cu3-N11
O1-Cu3-N12
03-Cu3-N9
03-Cu3-N10
03-Cu3-N11
03-Cu3-N12
N9—Cu3-N10
N9-Cu3-Nl1
N9-Cu3-NI12
N10-Cu3-N11
N10-Cu3-NI2
N11-Cu3-NI12

Cu3-03
Cu3-N9
Cu3-N10
Cu3-N11
Cu3-N12
01-Cé61
02-Co61
03-C61

N5-Cu2-N7
N5-Cu2-N8
N6—Cu2-N7
N6-Cu2-N8
N7-Cu2-N8
0O3-Cu3-N9
03-Cu3-N10
03-Cu3-N11
03-Cu3-N12
N9-Cu3-NI10
N9—Cu3-Nl1

2.403(7)
2.368(6)
2.048(8)
1.964(8)
1.963(7)
2.105(7)
1.241(11)
1.178(11)
1.195(12)

82.3(3)
80.4(3)
173.6(4)
106.2(4)
94.8(3)
103.1(3)
79.0(4)
50.4(2)
166.8(3)
97.4(3)
85.2(3)
85.3(3)
116.4(3)
89.9(3)
92.0(3)
135.6(3)
80.6(3)
97.4(3)
107.9(3)
177.4(3)
100.2(3)
79.5(3)

2.021(7)

1.948(10)
2.126(10)
1.977(11)
2.092(11)
1.282(12)
1.289(14)
1.276(13)

100.5(4)
176.5(4)
98.2(4)
97.4(4)
78.5(4)
94.0(4)
131.8(4)
93.2(4)
124.2(4)
79.7(4)
172.6(4)

(continued)
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Table 2. Continued.

02-Cu2-N6 163.5(4) N9-Cu3-N12 97.5(5)
02-Cu2-N7 98.0(3) N10-Cu3-N11 94.5(4)
02-Cu2-N8 88.6(3) N10-Cu3-N12 104.0(4)
N5-Cu2-N6 79.4(5) NI11-Cu3-N12 79.5(5)

3

Cul-01 2.043(6) Cu3-03 2.059(7)
Cul-N1 2.020(7) Cu3-N9 2.012(6)
Cul-N2 1.994(6) Cu3-N10 2.119(8)
Cul-N3 2.153(8) Cu3-N11 1.996(6)
Cul-N4 2.024(7) Cu3-NI12 2.039(7)
Cu2-01 2.525(6) 01-C61 1.215(10)
Cu2-02 2.102(6) 02-C61 1.263(11)
Cu2-N5 1.996(6) 03-C61 1.298(12)
Cu2-N6 2.106(7)

Cu2-N7 2.048(7)

Cu2-N8 1.999(6)

O1-Cul-NI1 163.8(3) 02-Cu2-N8 94.8(3)
O1-Cul-N2 94.2(3) N5-Cu2-N6 78.3(3)
O1-Cul-N3 89.1(2) N5-Cu2-N7 93.9(3)
O1-Cul-N4 91.0(3) N5-Cu2-N§ 172.93)
NI-Cul-N2 80.5(3) N6-Cu2-N7 93.1(3)
NI1-Cul-N3 107.0(3) N6-Cu2-N8 100.5(3)
N1-Cul-N4 93.2(3) N7-Cu2-N§ 79.2(3)
N2-Cul-N3 106.3(4) 03-Cu3-N9 91.9(3)
N2 Cul N4 172.9(3) 03-Cu3-N10 97.5(3)
N3-Cul-N4 78.6(4) 03-Cu3-N11 93.2(3)
01-Cu2-02 54.5(2) 03-Cu3-N12 152.8(3)
01-Cu2-N5 96.0(2) N9-Cu3-N10 79.1(3)
O1-Cu2-N6 161.5(2) N9-Cu3-N11 174.4(3)
O1-Cu2 N7 104.8(2) N9-Cu3-N12 95.5(3)
O1-Cu2-N8 87.3(2) N10-Cu3-N11 98.0(3)
02-Cu2-N5 92.2(3) N10-Cu3-N12 109.6(3)
02-Cu2 N6 107.8(3) NI11-Cu3-N12 80.9(3)
02-Cu2-N7 159.0(3)

In their infrared spectra, frequencies of the antisymmetric and symmetric stretches of
carbonate in 1-3 are v,= 1472, 1477, and 1475cm™" and 1444, 1440, and 1446cm™ !,
respectively. The strong bands at 1084, 1089, and 845cm™' in 1-3 are the typical
absorptions of ClIO, and PFg counterions.

3.2. Structural elucidation of trinuclear copper(Il) complexes 1-3

The cationic structures of the trinuclear copper(Il) complexes with the anisotropic
displacement ellipsoids and atom-numbering scheme are shown in figure 1. Complex 1
crystallizes in the triclinic space group P with one [Cus(bpy)s(CO5)]*", four
perchlorates, one free methanol, and two half crystalline water molecules in the
asymmetric unit. The coordination sphere of each copper(Il) is a severely distorted
octahedron with four nitrogen atoms from two bpy and two oxygen atoms from
carbonate. The Cu—N bond lengths of 1.951(7)-2.116(11) A are shorter than the Cu—0O
bond lengths of 2.279(6)-2.551(7) A, where Jahn-Teller effects have not been observed.
The carbonate is M;-CO? linking three adjacent copper(Il) centers and forming
trinuclear copper(Il) complexes. The central m-CO%* bridge adopts a us-n°, 7% 7
coordination mode in 1.
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Table 3. Intermolecular hydrogen-bonding interactions (/0\, °) in 1-3.

D-H---A D-H H-A DA /DHA Symmetry transformations
1

Cl11-HI11---019 0.93 2.53 3.31(2) 141.0 X, =14y, z
C13-H13---010 0.93 2.44 3.24(2) 139.0 x, =14y, z
Cl4-H14---06 0.93 2.48 3.24(2) 139.0 l—x, 1-y, 1 -z
C19-H19---0O11 0.93 2.54 3.23(2) 131.0 —14+x,pz
C22-H22---013 0.93 2.55 3.28(2) 135.0 —x, l—y, 11—z
C27-H27---019 0.93 2.39 3.26(2) 156.0 l—x, 1=y, —z
C28-H28---02 0.93 2.52 3.31(2) 139.0 l—x, —y, —z
C34-H34.-..07 0.93 2.49 3.30(2) 146.0 x, =l+y,z
C37-H37---04 0.93 2.45 3.35(2) 158.0 X, =14y, z
C54-H54--.011 0.93 2.59 3.37(2) 141.0 —14+xpz

2

C2-H2---018 0.93 2.40 3.08(3) 130.0 —14+xpz
C3-H3-..011 0.93 2.52 3.13(3) 123.0 —14+xpz
Cl1-H11---010 0.93 2.38 3.11(3) 135.0 —x, 1=y, —z
C24-H24---011 0.93 2.56 3.36(2) 145.0 x, 14y, z
C32-H32---012 0.93 2.50 3.26(3) 139.0 x, 14y, z
C49-H49---05 0.93 2.52 3.38(3) 154.0 l—x,2—p, 11—z
3

Cl-H1---FI5 0.93 2.55 3.22(2) 130.0 l—x, 11—y, —z
C4-H4---F23 0.93 2.39 3.23(2) 150.0 l—x, 1=y, —z
Cl4-H14---F24 0.93 2.41 3.21(2) 145.0 l—x,2—y, -z
C17-H17---F21 0.93 2.49 3.36(2) 156.0 l—x,2—y, —z
C22-H22---F16 0.93 2.46 3.23(2) 131.0 x, 14y, 2z
C30-H30---F11 0.93 2.46 3.31(2) 151.0 2—-x, 1=y, 11—z
C33-H33---F13 0.93 2.54 3.27(2) 135.0 I+x, 14y, z
C34-H34---F7 0.93 2.45 3.29(2) 152.0 I+x, 14y, z
C37-H37---F7 0.93 2.48 3.25(2) 141.0 I+x, 14y, z
C48-H48- - -F20 0.93 2.51 3.30(2) 143.0 —x, 1=y, —z
C59-H59---F10 0.93 2.50 3.26(2) 139.0 l—x, 1=y, 11—z

Complex 2 crystallizes in the triclinic space group P1 where one [Cus(bpy)s(CO5)]*",
four perchlorates, one crystalline water molecule, and four free ethanols are found in
the asymmetric unit. In comparison with 1, coordination between copper(Il) centers
and carbonate are different in addition to differences in solvent. The coordination
spheres of copper(II) centers are distorted five-coordinate square pyramids for Cul and
Cu2 and trigonal bipyramid for Cu3 (r=0.307 for Cul, 0.217 for Cu2, and 0.680 for
Cu3), respectively [34]. Each copper(II) is coordinated with four nitrogen atoms from
two bpy and one oxygen atom from carbonate The central u3-CO§_ bridge is us-n', n',
n' and the Cu—O bond lengths (1.948(8)-2.021(7) /0\) are comparable to Cu—N bond
lengths (1.948(10)-2.126(10) A).

Complex 3 also crystallizes in the triclinic space group PI1, consisting of one
[Cu;(bpy)s(CO5)]* ", four hexafluorophosphorates, and half a crystalline water molecule
in the asymmetric unit. The coordination of copper(Il) is distorted square pyramids for
Cul and Cu3 (z=0.152 for Cul and 0.360 for Cu3) and distorted octahedron for Cu2.
Coordination of Cul and Cu3 is quite similar to those in 2 with the Cu—O and Cu—N
bond lengths of 2.043(6)72.525(6)1& and 1.994(6)-2.153(8) A, respectively. However,
two bonds are formed between Cu2 and carbonate with lengths of 2.102(6) and
2.525(6) A, exhibiting a us-n', n', n* coordination.
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Figure 1. ORTEP plots of the cations of 1-3. Thermal ellipsoids are drawn at 20% probability (hydrogen
atoms and solvent molecules are omitted for clarity).
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Figure 2. Intermolecular and intramolecular 7— stacking interactions in 1 and 2.

In the crystal packing of 1, intramolecular and intermolecular 77— stacking interac-
tions are found between neighboring pyridine rings of bpy with centroid—centroid
separations of 3.835, 3.965, and 3.483 A, forming a 1-D supramolecular chain [35], as
shown in figure 2(a). Similar 77— stacking interactions and 1-D supramolecular chains
are also observed in 2. The centroid—centroid separations are 3.900, 3.777, and 3.649 A,
respectively, as can be seen in figure 2(b). No w—7 stacking interactions can be found in
3. However, weak intermolecular C—H---O hydrogen-bonding interactions are
abundant in 1-3, as listed in table 3, due to the presence of large numbers of
counterions and crystalline solvent. The presence of different counterions and solvent
molecules in 1-3 is responsible for the variations of coordination, coordination spheres
of copper(Il), and crystal packing.

4. Conclusion

Three triangular trinuclear copper(II) complexes bridged by carbonate have been
synthesized and structurally characterized. Carbonate anions originate from atmo-
spheric CO, when the solutions are exposed to air for a long time. The common
[Cus(bpy)s(CO5)]*" unit in 1-3 shows distinguishable coordination fashions, i.e., u3-n7,
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n?, n”in 1, pusn', ', n'in 2, and us-n', n', n* in 3. The copper(Il) centers are five-
coordinate trigonal bipyramidal and square pyramidal as well as six-coordinate
octahedral. Similar 1-D supramolecular chains are formed in 1 and 2 with the help of
intramolecular and intermolecular 7—s stacking interactions. Various weak hydrogen-
bonding interactions are observed in all three complexes.

Supplementary material

Crystallographic data for the structural analysis have been deposited at the Cambridge
Crystallographic Data Center, CCDC 878456~878458 for trinuclear copper(Il)
complexes 1-3 (The Director, 12 Union Road, Cambridge, CB2 1EZ, UK; Fax: +44-
1223-336-033; E-mail: request@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk). Copies
of this information are available free of charge on request quoting the deposition
CCDC number.
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